Microarray analysis of E2Fa-DPa-overexpressing plants uncovers a cross-talking genetic network between DNA replication and nitrogen assimilation.

نویسندگان

  • Kobe Vlieghe
  • Marnik Vuylsteke
  • Kobe Florquin
  • Stephane Rombauts
  • Sara Maes
  • Sandra Ormenese
  • Paul Van Hummelen
  • Yves Van de Peer
  • Dirk Inze
  • Lieven De Veylder
چکیده

Previously we have shown that overexpression of the heterodimeric E2Fa-DPa transcription factor in Arabidopsis thaliana results in ectopic cell division, increased endoreduplication, and an early arrest in development. To gain a better insight into the phenotypic behavior of E2Fa-DPa transgenic plants and to identify E2Fa-DPa target genes, a transcriptomic microarray analysis was performed. Out of 4,390 unique genes, a total of 188 had a twofold or more up- (84) or down-regulated (104) expression level in E2Fa-DPa transgenic plants compared to wild-type lines. Detailed promoter analysis allowed the identification of novel E2Fa-DPa target genes, mainly involved in DNA replication. Secondarily induced genes encoded proteins involved in cell wall biosynthesis, transcription and signal transduction or had an unknown function. A large number of metabolic genes were modified as well, among which, surprisingly, many genes were involved in nitrate assimilation. Our data suggest that the growth arrest observed upon E2Fa-DPa overexpression results at least partly from a nitrogen drain to the nucleotide synthesis pathway, causing decreased synthesis of other nitrogen compounds, such as amino acids and storage proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of proliferation, endoreduplication and differentiation by the Arabidopsis E2Fa-DPa transcription factor.

New plant cells arise at the meristems, where they divide a few times before they leave the cell-cycle program and start to differentiate. Here we show that the E2Fa-DPa transcription factor of Arabidopsis thaliana is a key regulator determining the proliferative status of plant cells. Ectopic expression of E2Fa induced sustained cell proliferation in normally differentiated cotyledon and hypoc...

متن کامل

The plant-specific cyclin-dependent kinase CDKB1;1 and transcription factor E2Fa-DPa control the balance of mitotically dividing and endoreduplicating cells in Arabidopsis.

Transgenic Arabidopsis thaliana plants overproducing the E2Fa-DPa transcription factor have two distinct cell-specific phenotypes: some cells divide ectopically and others are stimulated to endocycle. The decision of cells to undergo extra mitotic divisions has been postulated to depend on the presence of a mitosis-inducing factor (MIF). Plants possess a unique class of cyclin-dependent kinases...

متن کامل

Genome-wide identification of potential plant E2F target genes.

Entry into the S phase of the cell cycle is controlled by E2F transcription factors that induce the transcription of genes required for cell cycle progression and DNA replication. Although the E2F pathway is highly conserved in higher eukaryotes, only a few E2F target genes have been experimentally validated in plants. We have combined microarray analysis and bioinformatics tools to identify pl...

متن کامل

Cross-Species Network Analysis Uncovers Conserved Nitrogen-Regulated Network Modules in Rice.

In this study, we used a cross-species network approach to uncover nitrogen (N)-regulated network modules conserved across a model and a crop species. By translating gene network knowledge from the data-rich model Arabidopsis (Arabidopsis thaliana) to a crop, rice (Oryza sativa), we identified evolutionarily conserved N-regulatory modules as targets for translational studies to improve N use ef...

متن کامل

Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis.

Complex and interconnected signaling networks allow organisms to control cell division, growth, differentiation, or programmed cell death in response to metabolic and environmental cues. In plants, it is known that sugar and nitrogen are critical nutrient signals; however, our understanding of the molecular mechanisms underlying nutrient signal transduction is very limited. To begin unraveling ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 116 Pt 20  شماره 

صفحات  -

تاریخ انتشار 2003